ported while a more significant difference is observed in the case of density. The latter is likely to be due to using a more accurate instrument here than in previous work.

Glossary - -

A, B, C	coefficients (eq 1)
Wea	solubility, kg of K ₂ SO ₄ /kg of H ₂ O
x	concentration of 2-propanol, kg of 2-propanol/kg of
ρ	density of saturated solution, kg/m ³

Registry No. K₂SO₄, 7778-80-5; 2-propanol, 67-63-0.

Literature Cited

- (1) Mullin, J. W. Crystallization, 2nd ed.; Butterworths: London, 1972; Chapter 9, pp 263–265. Karpinski, P. H.; Budz, J.; Mydlarz, J. International Symposium–Work-
- (2) Karpinski, P. H., Budzi, J., Mydarz, J. International Symposium-Work-shop on Particulate and Multi-Phase Processes and 16th Annual Meeting of the Fine Particle Society, Miami Beach, FL, 1985.
 Mydiarz, J.; Jones, A. G. Chem. Eng. Res. Dev., in press.
 Mullin, J. W.; Gaska, C. J. Chem. Eng. Data 1973, 18, 217.
 Ishii, T.; Fujita, S. J. Chem. Eng. Data 1978, 23, 19.
 Brend M. With L. Schept. O. Scheffingthe Located Press for Component Action 1978.
- (5)
- Broul, M.; Nyvlt, J.; Söhnel, O. Solubility in Inorganic Two-Component (6)
 - Systems: Academia: Prague; Elsevier: Amsterdam, 1981; pp 89, 94.

Received for review December 8, 1987. Accepted August 15, 1988.

Isobaric Vapor-Liquid Equilibria for 6-Methyl-5-hepten-2-one + Bis(3-methyl-2-butenyl) Ether, Bis(3-methyl-2-butenyl) Ether + 3,3-Dimethyl-2-propen-1-ol, 3,3-Dimethyl-2-propen-1-ol + 6-Methyl-5-hepten-2-one, and 6-Methyl-5-hepten-2-one + 6-Methyl-3-isopropenyl-5-hepten-2-one Binary Systems

Kun Wang,* Xu-Gen Ying, Ming-Si Xia, Jian-Zhong Xia, and Ying Hu

Thermodynamics Research Laboratory, East China Institute of Chemical Technology, Shanghai 200237, China

Isobaric vapor-liquid equilibria (VLE) data and UNIQUAC parameters of four binary systems,

6-methyl-5-hepten-2-one + bis(3-methyl-2-butenyl) ether, bis(3-methyl-2-butenyl) ether +

3,3-dimethyl-2-propen-1-ol, 3,3-dimethyl-2-propen-1-ol + 6-methyl-5-hepten-2-one, and 6-methyl-5-hepten-2-one + 6-methyl-3-isopropenyl-5-hepten-2-one at 50, 100, and 150 mmHg are presented. The vapor pressure data and Antoine constants for pure components are also reported.

Introduction

6-Methyl-5-hepten-2-one is an important organic intermediate for synthesizing vitamins A, E, and K₁ as well as some kinds of perfumes and fine chemicals. For the design and operation of separation processes for manufacturing 6-methyl-5-hepten-2-one with high purity, it is necessary to obtain precise VLE data at low pressures for various combinations of components concerning these processes. In this work, the isobaric p-t-xdata for 6-methyl-5-hepten-2-one + bis(3-methyl-2-butenyl) ether, bis(3-methyl-2-butenyl) ether + 3,3-dimethyl-2-propen-1-ol, 3,3-dimethyl-2-propen-1-ol + 6-methyl-5-hepten-2-one, and 6-methyl-5-hepten-2-one + 6-methyl-3-isopropenyl-5-hepten-2-one binary systems at low pressures and vapor pressures of corresponding pure components were presented. The vapor compositions were calculated by a direct method based on the Gibbs-Duhem equation developed previously (1). The experimental data sets were also correlated with UNIQUAC model (2) for practical purposes.

Experimental Section

All chemicals prepared from other laboratories using the methods provided by literature (3) were further purified by rectification in an Auto Annular Still (Perkin-Elmer Model 251) under vacuum with approximately 100 theoretical plates. The purity of all chemicals as tested by gas chromatography was greater than 99.9 wt %. Vapor-liquid equilibria and vapor pressures were measured by an Eckert ebulliometer (4) connected with a constant-pressure control unit (sensitivity ±0.02 mmHg) and charged with liquid mixture of known amount and composition. After the steady state was established, the pressure readings were taken from a mercury manometer by a cathetometer (accuracy ± 0.02 mm) and corrected for standard density and gravitation acceleration. The temperatures were measured by using a calibrated mercury thermometer (accuracy ±0.01 °C). The equilibrium composition of liquid

Figure 1. t-x-y diagram of 6-methyl-5-hepten-2-one (1) + bis(3-methyl-2-butenyl) ether (2) system at 50 mmHg: (\bullet) experimental; (—) UNIQUAC.

Figure 2. t-x-y diagram of bis(3-methyl-2-butenyl) ether (1) + 3,3dimethyl-2-propen-1-ol (2) system at 50 mmHg: ($\textcircled{\bullet}$) experimental; (\frown) UNIQUAC.

phase in the ebulliometer was calculated from the original composition by means of the material balance equation (5).

Results

Boiling points as a function of liquid compositions and pressures were measured for 6-methyl-5-hepten-2-one + bis(3methyl-2-butenyl) ether, bis(3-methyl-2-butenyl) ether + 3,3dimethyl-2-propen-1-ol, 3,3-dimethyl-2-propen-1-ol + 6methyl-5-hepten-2-one, and 6-methyl-5-hepten-2-one + 6methyl-3-isopropenyl-5-hepten-2-one binary systems at 50-150 mmHg.

Figure 3. t-x-y diagram of 3,3-dimethyl-2-propen-1-ol (1) + 6methyl-5-hepten-2-one (2) system at 50 mmHg: (\bigcirc) experimental; (-) UNIQUAC.

Figure 4. t-x-y diagram of 6-methyl-5-hepten-2-one (1) + 6-methyl-3-isopropenyl-5-hepten-2-one (2) system at 50 mmHg: (\bullet) experimental; (-) UNIQUAC.

In order to obtain complete VLE data, the equilibrium vapor compositions were calculated by a direct thermodynamic method developed previously (1). The results are listed in Table I.

The experimental p-t-x data of four binary systems were also correlated with the UNIQUAC equation. The model parameters were estimated by means of a maximum likelihood method (6) developed previously with the use of the objective function S;

$$S = \sum_{i=1}^{N} (p_{i,\text{calod}} - p_{i,\text{exptl}})^2 / \sigma_p^2$$
(1)

The required volume parameters r_i and area parameters q_i for

Table I.	Isobaric	VLE Data o	of Four Binar	y Systems	Compared	with Bubb	ole-Point-Ca	alculation `	Values by	UNIQUAC 8	at 50, 10	0, and
150 mmH	lg⁴											

**************************************			direct method	UNIQ	UAC		
system, press.	<i>x</i> 1	tornt1/°C		toolod /°C	Y1 colori	$\Delta t / ^{\circ} C$	Δv_1
		- 64007 -	5 1,0al00	- (a)(0) -	, calou		
A, 50 mmHg	0.0000	109.36	0.0000	109.36	0.0000	0.00	0.0000
	0.0956	106.44	0.1986	106.31	0.1977	-0.13	-0.0009
	0.1993	103.37	0.3787	103.51	0.3636	0.14	-0.0151
	0.4020	99.14	0.5949	99.14	0.5967	0.00	0.0018
	0.4977	97.61	0.6741	97.46	0.6799	-0.15	0.0058
	0.6983	94.22	0.8296	94.54	0.8218	0.32	-0.0078
	0.8004	93.43	0.8713	93.30	0.8838	-0.14	0.0125
	0.9004	92.34	0.9415	92.20	0.9418	-0.15	0.0003
	1.0000	91.20	1.0000	91.20	1.0000	0.00	0.0000
\mathbf{P} 50 mm \mathbf{H}	0.0000	74 79	0.0000	74 79	0.0000	0.17	0.0003
B, 50 mmrg	0.0000	76.94	0.0000	76.91	0.0000	0.00	0.0000
	0.0504	77.88	0.0207	78.07	0.0200	0.07	0.0000
	0.3054	80.01	0.0021	80.08	0.0938	0.13	0.0040
	0.4022	82.59	0.1387	82.14	0.1337	-0.45	-0.0050
	0.5033	84.61	0.1818	84.59	0.1842	-0.02	0.0024
	0.5835	86.72	0.2282	86.82	0.2335	0.10	0.0053
	0.7379	91.89	0.3529	92.21	0.3682	0.32	0.0153
	0.8043	95.11	0.4408	95.21	0.4541	0.10	0.0133
	0.9014	101.26	0.6445	100.85	0.6413	-0.41	-0.0032
	1.0000	109.36	1.0000	109.36	1.0000	0.00	0.0000
rms						0.24	0.0077
C, 50 mmHg	0.0000	91.20	0.0000	91.20	0.0000	0.00	0.0000
-	0.0991	86.76	0.2522	86.54	0.2569	-0.22	0.0047
	0.1992	83.37	0.4187	83.34	0.4171	-0.03	-0.0016
	0.2990	81.03	0.5229	81.06	0.5277	0.03	-0.0022
	0.3950	79.08	0.6211	79.42	0.6086	0.34	-0.0125
	0.4963	78.11	0.6711	78.09	0.6783	-0.02	0.0072
	0.6030	77.14	0.7351	77.00	0.7424	-0.14	0.0073
	0.6991	76.16	0.8037	76.21	0.7970	0.05	-0.0067
	0.7987	75.56	0.8525	75.56	0.8549	0.00	0.0024
	0.8985	75.38	0.9103	75.06	0.9197	-0.32	0.0094
	1.0000	74.73	1.0000	74.73	1.0000	0.00	0.0000
rms	0.0000	110.05	0.0000	110.05	0.0000	0.18	0.0069
D, 50 mmHg	0.0000	110.00	0.0000	110.00	0.0000	0.00	0.0000
	0.0992	109.28	0.2305	100.00	0.2344	-0.19	0.0021
	0.2000	106.07	0.5413	106.17	0.5383	0.10	-0.0030
	0.3966	103.26	0.6488	103.56	0.6436	0.30	-0.0052
	0.4980	101.13	0.7250	101.10	0.7333	-0.03	0.0083
	0.5983	99.11	0.7961	98.84	0.8073	-0.27	0.0112
	0.6996	96.94	0.8653	96.71	0.8699	-0.23	0.0046
	0.7990	94.51	0.9268	94.76	0.9213	0.25	-0.0055
	0.9006	92.59	0.9662	92.89	0.9649	0.30	-0.0013
	1.0000	91.20	1.0000	91.20	1.0000	0.00	0.0000
rms						0.22	0.0065
A, 100 mmHg	0.0000	127.85	0.0000	127.85	0.0000	0.00	0.0000
	0.0954	124.01	0.2149	124.19	0.2055	0.18	-0.0094
	0.1994	121.02	0.3704	121.10	0.3668	0.08	-0.0036
	0.4022	116.99	0.5781	116.68	0.5864	-0.31	0.0083
	0.4977	115.11	0.6715	115.04	0.6665	-0.07	-0.0050
	0.6984	112.02	0.8157	112.16	0.8110	0.14	-0.0047
	0.8003	110.70	0.8809	110.89	0.8771	0.18	-0.0034
	1.0000	109.52	0.9400	109.75	0.9390	0.21	-0.0013
E ma	1.0000	108.00	1.0000	100.00	1.0000	0.00	0.0057
B 100 mmHg	0.0000	89.66	0.0000	89.66	0.0000	0.00	0.0000
D, 100 maning	0.0000	91.10	0.0251	91.34	0.0269	0.24	0.0018
	0.1999	92.95	0.0523	93.19	0.0571	0.25	0.0048
	0.3054	95.23	0.0872	95.33	0.0928	0.10	0.0056
	0.4023	97.82	0.1315	97.55	0.1313	-0.27	-0.0002
	0.5033	100.45	0.1817	100.21	0.1802	-0.24	-0.0015
	0.5836	102.47	0.2212	102.67	0.2285	0.21	0.0073
	0.7379	108.64	0.3557	108.69	0.3623	0.05	0.0066
	0.8043	111.99	0.4397	112.06	0.4489	0.07	0.0092
	0.9015	118.54	0.6346	118.41	0.6386	-0.13	0.0040
	1.0000	127.85	1.0000	127.85	1.0000	0.00	0.0000
rms	0.0000	100.05	0.0000	109.05	0.0000	0.19	0.0054
C, 100 mmHg	0.0000	108.65	0.0000	108.05	0.0000	0.00	0.0000
	0.0991	104.09	0.2430	100.77	0.2010	-0.32	-0.0078
	0.1992	Q7 51	0.4104	Q7 47	0.5364	-0.10	-0.0004
	0.3949	95 19	0.6318	95 43	0.6234	0.24	-0.0084
	0.4959	93.43	0.7044	93.74	0.6967	0.32	-0.0077
	0.6028	92.49	0.7502	92.35	0.7613	-0.14	0.0111
	0.6990	91.33	0.8153	91.37	0.8130	0.04	-0.0023
	0.7987	90.69	0.8570	90.58	0.8650	-0.11	0.0080
	0.8985	90.29	0.9171	89.99	0.9223	-0.31	0.0052
	1.0000	89.66	1.0000	89.66	1.0000	0.00	0.0000
rms						0.21	0.0068

			direct method	UNIQ	UAC		
system, press.	<i>x</i> ₁	$t_{exptl}/^{\circ}C$	y _{1,calod}	$t_{\rm calcd}/{\rm ^{o}C}$	$\mathcal{Y}_{1, calcd}$	$\Delta t/^{\circ}\mathrm{C}$	Δy_1
D 100 mmHg	0.0000	135 10	0.0000	135 10	0.0000	0.00	0.0000
D, IOO mming	0.0003	120.64	0.2223	120.87	0.2265	0.93	-0.0058
	0.0993	107.49	0.2020	107.07	0.2200	0.20	0.0000
	0.2001	127.48	0.3841	127.27	0.3974	-0.21	0.0133
	0.2986	124.24	0.5250	124.21	0.5278	-0.03	0.0028
	0.3968	121.37	0.6332	121.48	0.6333	0.11	0.0001
	0.4981	119.00	0.7166	118.92	0.7235	-0.08	0.0069
	0.5983	116.50	0.7981	116.58	0.7984	0.08	0.0003
	0.6997	114 56	0.8565	114.38	0.8625	-0.18	0.0060
	0.7991	112.20	0.9188	112 35	0.9159	0.15	-0.0029
	0.7991	110.04	0.0000	110.49	0.9109	0.10	0.0023
	0.9000	110.24	0.9023	110.42	0.9020	0.18	-0.0003
	1.0000	108.65	1.0000	108.65	1.0000	0.00	0.0000
rms						0.15	0.0059
A. 150 mmHg	0.0000	139.52	0.0000	139.52	0.0000	0.00	0.0000
, U	0.0953	135.06	0.2246	135.41	0.2107	0.35	-0.0139
	0 1995	199 19	0.3660	132 17	0.3680	0.04	0.0020
	0.1000	102.10	0.5000	102.11	0.0000	0.04	0.0020
	0.4023	126.24	0.3084	127.70	0.0790	-0.40	0.0111
	0.4977	126.14	0.6705	126.15	0.6585	0.01	-0.0120
	0.6985	123.26	0.8071	123.26	0.8054	0.00	-0.0017
	0.8002	121.58	0.8855	121.98	0.8737	0.40	-0.0118
	0.9004	120.33	0.9405	120.79	0.9383	0.46	-0.0022
	1 0000	119.66	1 0000	119.66	1 0000	0.00	0,0000
	1.0000	115.00	1.0000	113.00	1.0000	0.00	0.0004
rms				~~ ~~		0.32	0.0094
B, 150 mmHg	0.0000	99.00	0.0000	99.00	0.0000	0.00	0.0000
	0.0984	100.39	0.0247	100.73	0.0273	0.34	0.0026
	0.1999	102.37	0.0521	102.65	0.0570	0.28	0.0049
	0.3054	104.76	0.0866	104.86	0.0918	0.10	0.0052
	0 4023	107 34	0 1 276	107 19	0 1 2 9 3	-0.16	0.0017
	0.4020	110.90	0.1015	110.00	0.1774	0.10	0.0011
	0.5033	110.39	0.1815	110.00	0.1774	-0.39	-0.0041
	0.5836	112.33	0.2172	112.63	0.2254	0.30	0.0082
	0.7379	119.17	0.3573	119.08	0.3593	-0.09	0.0020
	0.8044	122.60	0.4390	122.70	0.4465	0.10	0.0075
	0.9016	129.41	0.6289	129.50	0.6378	0.09	0.0089
	1 0000	130.52	1 0000	139 52	1 0000	0.00	0.0000
	1.0000	103.02	1.0000	103.02	1.0000	0.00	0.0000
rms	0 0000	110.00	0.0000	110.00	0.0000	0.23	0.0006
C, 150 mmHg	0.0000	119.66	0.0000	119.66	0.0000	0.00	0.0000
	0.0992	115.03	0.2389	114.59	0.2496	-0,44	0.0107
	0.1992	110.93	0.4183	110.76	0.4186	-0.17	0.0003
	0.2988	107.88	0.5403	107.78	0.5406	-0.10	0.0003
	0.3948	105.32	0.6379	105 50	0.6306	0.18	-0.0073
	0.0040	102.02	0.7212	102.58	0.7061	0.10	_0.00152
	0.4500	100.02	0.7213	103.00	0.7001	0.00	-0.0102
	0.6027	102.10	0.7091	101.98	0.7716	-0.12	0.0125
	0.6990	100.82	0.8221	100.86	0.8223	0.04	0.0002
	0.7986	100.17	0.8600	99.97	0.8715	-0.20	0.0115
	0.8984	99.62	0.9218	99.32	0.9242	-0.30	0.0024
	1.0000	99.00	1.0000	99.00	1,0000	0.00	0.0000
rma	1.0000		2.0000		2.0000	0.29	0.0088
D 150 m 17-	0.0000	146 79	0.0000	146 79	0.0000	0.23	0.0000
D, 150 mmrig	0.0000	140.72	0.0000	140.72	0.0000	0.00	0.0000
	0.0993	142.09	0.2298	142.45	0.2213	0.36	-0.0085
	0.2002	138.94	0.3757	138.76	0.3912	-0.18	0.0155
	0.2987	135.70	0.5152	135.60	0.5217	-0.10	0.0065
	0.3969	132.80	0.6237	132.79	0.6276	-0.01	0.0039
	0.4981	130.96	0.7119	190 15	0 7181	_0.11	0.0000
	0.4301	107.44	0.7113	107.10	0.7101	-0.11	0.0002
	0.5983	12/.44	0.7994	12/./5	0.7934	0.31	-0.0060
	0.6997	125.66	0.8510	125.50	0.8583	-0.16	0.0073
	0.7992	123.37	0.9136	123.44	0.9126	0.07	-0.0010
	0.9006	121.37	0.9599	121.47	0.9601	0.10	0.0002
	1 0000	119.66	1 0000	119.66	1.0000	0.00	0.0000
	1.(((())))	1 1 22 1 1 1 1	1.1.0.0.0.1		1	17.1.1.7	

Journal of Chemical and Engineering Data, Vol. 34, No. 1, 1989 129

^aSystems: A, 6-methyl-5-hepten-2-one + bis(3-methyl-2-butenyl) ether; B, bis(3-methyl-2-butenyl) ether + 3,3-dimethyl-2-propen-1-ol; C, 3,3-dimethyl-2-propen-1-ol + 6-methyl-5-hepten-2-one; D, 6-methyl-5-hepten-2-one + 6-methyl-3-isopropenyl-5-hepten-2-one.

various components were calculated with the same group parameters used in UNIFAC (7). The values of r_i and q_i are reported in Table II. Table III shows the parameters of the UNIQUAC equation of four binaries. Bubble-point calculations were made with the use of these parameters. The results are also presented in Table I. It can be shown from these tables that the calculated bubble points and vapor compositions are in good agreement with the experimental values and those calculated by direct thermodynamic method.

Table I (Continued)

Figures 1-4 show the t-x-y diagrams of the four binary systems at 50 mmHg.

Experimental vapor pressures and corresponding Antoine constants obtained by fitting experimental data of the four pure components are listed in Tables IV and V. The rms's of fitting are 0.26, 0.35, 0.38, and 0.22 mmHg for 6-methyl-5-hepten-

Table II. Volume and Area Parameters of Four Pure Components

component	ri	q_i
6-methyl-5-hepten-2-one	5.7120	4.9400
bis(3-methyl-2-butenyl) ether	6.9743	6.0640
3,3-dimethyl-2-propen-1-ol	4.3652	4.1120
6-methyl-3-isopropenyl-5-hepten-2-one	7.5029	6.4640

2-one, bis(3-methyl-2-butenyl) ether, 3,3-dimethyl-2-propen-1-ol, and 6-methyl-3-isopropenyl-5-hepten-2-one, respectively.

Conclusions

The experimental p-t-x data of four binaries can be correlated satisfactorily by the UNIQUAC model. The UNIQUAC

Table III. UNIQUAC Parameters of Four Binary Systems

	pressure/mmHg							
	50		100		150		50-150	
system (i–j)	$\frac{(u_{ij}-u_{jj})}{R}$	$\frac{(u_{ji}-u_{ii})}{R}$	$\frac{(u_{ij}-u_{jj})}{R}$	$\frac{(u_{ji}-u_{ii})}{R}$	$\frac{(u_{ij}-u_{jj})}{R}$	$\frac{(u_{ji}-u_{ii})}{R}$	$\frac{(u_{ij} - u_{jj})}{R}$	$\frac{(u_{ji}-u_{ii})}{R}$
6-methyl-5-hepten-2-one + bis(3-methyl-2-butenyl) ether	99.67	-75.66	-93.44	127.2	-138.5	193.7	-129.5	179.2
bis(3-methyl-2-butenyl) ether + 3,3-dimethyl-2-propen-1-ol	131.9	-101.2	70.48	-51.34	-7.393	23.20	51.52	-34.37
3,3-dimethyl-2-propen-1-ol + 6-methyl-5-hepten-2-one	32.33	7.049	186.3	-117.2	258.4	-162.7	206.4	-130.9
6-methyl-5-hepten-2-one + 6-methyl-3-isopropenyl-5-	-159.7	198.4	-150.3	183.1	-135.8	161.4	-142.0	170.4

hepten-2-one

Table IV. Experimental Vapor Pressure vs Temperature **Data of Four Pure Components**

component	t/°C	p/mmHg
6-methyl-5-hepten-2-one	90.15	48.05
	96.41	62.03
	100.40	72.32
	104.49	85.63
	108.75	100.34
	114.95	126.09
	119.30	148.26
bis(3-methyl-2-butenyl) ether	109.10	49.25
	117.70	69.24
	123.44	84.76
	129.27	105.13
	134.90	127.90
	140.63	156.17
3,3-dimethyl-2-propen-1-ol	73.70	47.91
	80.40	65.78
	83.12	74.26
	86.48	86.15
	88.82	96.11
	91.32	108.09
	92.97	115.53
	93.28	118.01
	95.30	127.83
	97.64	141.26
6-methyl-3-isopropenyl-5-	115.84	48.62
hepten-2-one	122.74	63.36
	126.92	73. 9 5
	129.90	82.55
	133.73	95.51
	138.05	111.21
	146.40	148.10

Table V. Antoine Constants of Four Pure Components

 $\ln (p/\text{mmHg}) = A - B/(t/^{\circ}\text{C} + C)$

component	A	В	С	press./ mmHg
6-methyl-5-hepten-2-one	19.0727	5523.76	273.15	50-150
bis(3-methyl-2-butenyl) ether	18.9409	5748.66	273.15	50-150
3.3-dimethyl-2-propen-1-ol	20.7580	5860.44	273.15	50 - 150
6-methyl-3-isopropenyl-	19.2544	5980.46	273.15	50-150
5-hepten-2-one				

parameters obtained can be used in corresponding process design and development.

Glossary

A, B, C	Antoine constants
p	total vapor pressure, mmHg
q	area parameter
R	gas constant
rms	root-mean-square deviation
r	volume parameter
S	objective function
t	temperature, °C
u _{ll}	parameter of UNIQUAC equation
x	liquid mole fraction
у	vapor mole fraction
σ_p^2	estimated variance of the measured pressures
Subscript	s
calcd	calculated value

exptl	experimental value
I, J	component /, /
1, 2	component 1, 2

Registry No. 6-Methyl-5-hepten-2-one, 110-93-0; bis(3-methyl-2-butenyl) ether, 26902-25-0; 3,3-dimethyl-2-propen-1-ol, 556-82-1; 6-methyl-3-isopropenyl-5-hepten-2-one, 26533-38-0.

Literature Cited

- Hu, Y.; Ying, X.-G. J. Chem. Ind. Eng. (China) 1984, 3, 1.
 Abrams, D. S.; Prausnitz, J. M. AIChE J. 1975, 21, 116.
 Meuty, W. C.; Gradeff, P. S. U.S. Patent 3 668 255, 1972.
 Eckert, C. A.; Newman, B. A.; Nicolakles, G. L.; Long, T. C. AIChE J. 1981, 27, 33.
- 1981, 27, 33.
 Rogalski, M.; Malanowski, S. Fluid Phase Equilib. 1980, 5, 97.
 Hu, Y.; Ying, X.-G. Proceedings, CIESC and AIChE Joint Meeting of Chemical Engineering, 1982; Chemical Industry Press (China): Bei-jing, 1982; Vol. I, p 177.
 Fredenslund, A.; Grnehling, J.; Rasmussen, P. Vapor-Liquid Equilibria Using UNIFAC; Elsevier: Amsterdam, 1977, pp 39-48.

Received for review October 27, 1986. Revised March 29, 1988. Accepted July 29, 1988. We are very grateful for the financial support from the National Education commission of PRC.